Document Auto Tags
Document Information
Title: GSK plc Q3 2023 Earnings Call
Source: https://storage.googleapis.com/polarys-documents/uploads/9fd5423a-061f-4fbc-83f8-606477723cfe.pdf
Content Type: application/pdf
Word Count: 11426
Applied Auto Tags
| Auto Tag | Description | Extracted Value | Confidence | Applied | Actions |
|---|---|---|---|---|---|
| Company | No description | GSK |
|
2025-08-24T16:39:31.619000 | |
| Executives | No description | Nick Stone, Emma Walmsley, Tony Wood, Luke Miels, Deborah Waterhouse, Julie Brown |
|
2025-08-24T16:39:31.188000 | |
| Communication Type | No description | Earnings Call |
|
2025-08-24T16:39:33.237000 | |
| Executives | No description | Nick Stone, Emma Walmsley, Tony Wood, Luke Miels, Deborah Waterhouse, Julie Brown |
|
2025-08-24T16:39:29.853000 | |
| Communication Type | No description | Earnings Call |
|
2025-08-24T16:39:30.622000 | |
| Company | No description | GSK |
|
2025-08-24T16:39:30.285000 |
About Auto Tags
Automatic Extraction
Auto tags use AI to automatically extract specific information from this document based on predefined rules.
Re-apply Tags
You can re-apply auto tags to get updated extractions if the auto tag rules have been modified.
Remove Tags
Remove individual auto tags or use "Remove All Tags" to bulk remove all applied tags at once.